

Date Planned : / /	Daily Tutorial Sheet-8	Expected Duration : 90 Min	
Actual Date of Attempt ://	Level-2	Exact Duration :	

96. Match the Column :

Column-I		Column-II		
(A)	$Cu_2S + 2Cu_2O \longrightarrow 6Cu + SO_2$	(p)	Zone refining	
(B)	$Ni + 4CO \longrightarrow Ni(CO)_4 \xrightarrow{\Delta} Ni + 4CO$	(p)	Van-Arkel	
(C)	$\mathrm{Ti} + 2\mathrm{I}_2 \longrightarrow \mathrm{TiI}_4 \stackrel{\Delta}{\longrightarrow} \mathrm{Ti} + \mathrm{I}_2$	(r)	Mond's process	
(D)	Silicon and Germanium	(s)	Bessemerisation	

97. Match the Column :

Column-I (Process)		Column-II (Metal)		
(A)	Cyanide process	(p)	Ultrapure Ge	
(B)	Floatation process	(p)	Pine oil	
(C)	Electrolytic reduction	(r) Extraction of Al		
(D)	Zone refining	(s)	Extraction of Au	

98.	Which of the following	propesses is used	in metallurgy of	mognecium 2
98.	which of the following	processes is used	m metanurgy of	magnesium ?

(A) Fused salt electrolysis

- (B) Self reduction
- (C) Aqueous solution electrolysis
- **(D)** Thermite reduction

99. In the commercial electrochemical process for aluminium extraction, the electrolyte used is :

- (A) Al(OH)₃ in NaOH solution
- **(B)** An aqueous solution of $Al_2(SO_4)_3$
- (C) A molten mixture of Al_2O_3 and Na_3AlF_6
- **(D)** A molten of AlO(OH) and Al(OH)₃

100. Carbon cannot be used in the reduction of $\mathrm{Al}_2\mathrm{O}_3$ because :

- (A) It is an expansive process
- (B) The enthalpy of formation (energy required for formation) of ${\rm CO_2}$ is more than that of ${\rm Al_2O_3}$
- **(C)** Pure carbon is not easily available
- (D) The enthalpy of formation of Al_2O_3 is too high

*101. Coal gas is filled above the electrolyte in electrolysis of fused carnallite. Why?

- **(A)** to increase the pressure above
- **(B)** to avoid reaction of Mg with O_2
- (C) to avoid reaction of Mg and N_2
- (D) to avoid reaction of Mg with Ar

102. In castner's process the material used as anode is :

- **(A)** Ni
- **(B)** Fe
- **(C)** C
- **(D)** Pt

 $\textbf{103.} \quad \text{ During the electrolysis of carnallite, } \, \, \text{MgCl}_2 \, \text{ is decomposed and not KCl. This is because of :} \\$

- (A) Lower decomposition voltage of MgCl₂ than that of KCl
- **(B)** Reverse reaction $MgCl_2 + 2K \rightarrow Mg + 2KCl$ if KCl is decomposed under other experimental condition
- (C) Both (A) and (B)
- **(D)** None of the above
- **104.** The reduction of an oxide by aluminium is called:
 - (A) Baeyer's process
- (B) Goldschmidt's aluminothermite process
- (C) Hall's process
- (D) Van Arkel process
- 105. Incorrect statement in electrolysis of $\,{\rm Al_2O_3}\,$ by Hall-Heroult process is :
 - (A) Cryolite $Na_3[AlF_6]$ lowers the m.pt. of Al_2O_3 and increases its electrical conductivity
 - (B) Al is obtained at cathode and CO_2 at anode
 - (C) Li_2CO_3 can be used in place of cryolite (Na₃AlF₆)
 - (D) MgF_2 can be used in place of flourspar (CaF₂)